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Abstract

An analytical derivation of the surface deflections and the streamfunctions for the flow inside a liquid encapsulated liquid bridge

has been derived using an asymptotic expansion about a small capillary number. The model assumes an initially flat and cylindrical

interface under the assumption that the densities of both fluids are equal. To simplify the analysis, the top and bottom walls are

assumed to be stress-free and the Reynolds number is assumed to be negligible. Flow is generated either by a moving outer wall

(shear-driven flow) or by applying a temperature difference across the top and bottom walls (Marangoni-driven flow). The resulting

equations show that for the shear-driven flow, as the viscosity ratio increases, the surface deflections increase monotonically. For the

Marangoni-driven flow there exist values of the viscosity ratio where the surface deflections reach a minimum and then switch signs.

This investigation shows that it may be possible in more realistic systems to use an outer encapsulating liquid of the proper viscosity

ratio to stabilize the liquid–liquid interface during float zone crystal growth.

� 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

The liquid bridge has received much attention in the

last two decades as a model system to describe the float

zone technique (Hurle, 1994; Rybicki and Floryan,
1983a,b; Wanschura et al., 1995). The float zone is used

in the production of high purity silicon where an amor-

phous rod of silicon is passed through a ring heater. The

ring heater melts the rod and creates a suspended

‘‘bridge’’ of liquid between the amorphous rod and the

solidified crystal. If the height of the liquid bridge be-

comes too large, the liquid bridge will break and in-

terrupt the solidification. It is therefore of practical
importance to understand the stability of the liquid

bridge during the float zone process.

There is interest in applying the float zone technique

to the production of compound semiconductors, such as

gallium arsenide (GaAs). However, when GaAs is mel-

ted it decomposes into its constituents of gallium and

arsenic gas. In a Bridgman configuration, this decom-

position is avoided by placing a liquid encapsulant of

boron oxide (B2O3) around the GaAs, which lowers its

vapor pressure. The question is can we place a liquid

encapsulant around a liquid bridge? If so, how does the

fluid behavior of the liquid encapsulant affect the sta-

bility of the liquid bridge?
If we observe the liquid encapsulated float zone

process, we notice that there are two phenomena that

drive fluid motion: buoyancy-driven convection and

surface tension-driven convection. The temperature gra-

dients generated by the ring heater cause both buoyan-

cy-driven convection in the inner and outer fluids, as

well as a surface tension-driven convection (Marangoni

convection) at the liquid–liquid interface.
One interesting question that we may ask about the

liquid encapsulated liquid bridge is what role does the

viscosity play in the stability of the liquid–liquid inter-

face? On one hand, as the viscosity is increased, the

thicker fluid would act as a rigid plate and help stabi-

lize the interface. On the other hand, as the viscosity is

increased, the normal and tangential stresses on the

interface are increased, therefore destabilizing the in-
terface.

To answer this question, the stability of the interface

in an idealized liquid encapsulated liquid bridge con-

figuration will be studied. The fluid motion will be
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caused in two different ways. The first is by moving the

outer wall at a fixed velocity, which is a crude approx-

imation of the effect that buoyancy-driven flow in the

outer fluid has on the interface. The second way is by

applying a vertical temperature gradient across the in-

terface, causing Marangoni-driven flow. It will be shown

that for Marangoni-driven flows, there exist certain

viscosity ratios where the normal pressure and viscous
stresses of the inner and outer fluid nearly cancel each

other to create a flatter interface. Whereas for shear-

driven flows, an increase in the outer viscosity only de-

stabilizes the interface.

In Section 2, the model system will be described and

an analytical solution to the fluid flow and interface

shape is derived using an asymptotic expansion about a

small capillary number. Section 3 presents a discussion
on the results. Conclusions and future prospects of the

work are given in the Section 4.

2. Mathematical model

In this section we will outline the assumptions made

for the model liquid encapsulated liquid bridge. The
model system is divided up into two different problems

depending on whether we have shear-driven flow or

Marangoni-driven flow (Fig. 1). For the shear-driven

flow, there is no vertical temperature difference applied

and an outer radial wall moving at a fixed velocity

causes the fluid motion. For the Marangoni-driven flow,

the outer radial wall is fixed and the fluid motion is

generated by a vertical temperature difference that cau-
ses Marangoni stresses on the interface.

A viscous liquid encapsulated by another viscous

liquid is suspended between two rigid rods. A rigid wall

encloses the outer radius of the outer fluid. To simplify

the analysis, we will assume that the fluid–fluid interface

is initially flat and cylindrical. This assumption is valid

for microgravity conditions or when the densities of the
two fluids are identical. To further simplify the problem

we will assume that both the shear-driven and the Ma-

rangoni-driven flows occur at very low Reynolds num-

bers. This will allow us to neglect the nonlinear terms,

v � rv and v � rT in the Navier–Stokes and energy

equations, and decouples the temperature and velocity

fields.

We start with the Boussinesq approximation to the
axisymmetric continuity equation, momentum equation,

and the energy equation in cylindrical coordinates.

oeVVi
o~rr

þ
eVVi
~rr
þ o eUUi

o~zz
¼ 0 ð1Þ

Nomenclature

An, Cn, Dn, Yn, and Un

various coefficients of the solutions
Ca capillary number

g gravity

Gr Grashof number ðga1DTR3
2=q1m

2
1Þ

n unit normal outward

p pressure

Pr Prandtl number ðm=jÞ
r radial direction

Re Reynolds number ðR2Vo=m1Þ or ðr1DTR2=q1m
2
1Þ

R1;R2 distance to inner and outer radial wall

S Cauchy stress tensor

t time

t unit tangential vector

T temperature

U axial velocity

V radial velocity

v velocity vector
Vo velocity of outer moving wall

z axial direction

a thermal expansion coefficient

b ratio of length to outer radius ðL=R2Þ
C ratio of inner to outer radius ðR1=R2Þ
j thermal diffusivity

l dynamic viscosity

m kinematic viscosity
q density

r0 surface tension

r1 change of surface tension with temperature

x vorticity

w streamfunction

n interfacial deflection

Fig. 1. Schematic diagram of the model. When the shear-driven flow is

considered, the temperatures at the top and bottom wall are equal and

constant, and the outer wall is moving with a constant velocity. When

the Marangoni-driven flow is considered, a temperature difference is

applied across the top and bottom wall, and the outer wall is fixed.
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where i ¼ 1 is the inner fluid, i ¼ 2 is the outer fluid, Vi is
the radial component of velocity, Ui is the axial com-

ponent of velocity, pi is the pressure, Ti is the tempera-

ture, qi is the density, li is the dynamic viscosity, mi is the
kinematic viscosity, ji is the thermal diffusivity, and g is

gravity. The tildes ð�Þ represent unscaled variables.

For the first analysis, we consider the shear-driven

flow problem. Again, there is no applied temperature

difference and we can therefore neglect the temperature

in Eqs. (3) and (4). We will scale the length, velocity,

time, and pressure by R2, Vo, R2=Vo, and R2Vo=l1 re-

spectively, where R2 is the outer radius and Vo is the
velocity of the outer moving wall. Under this scaling we

introduce four dimensionless numbers.

b ¼ L
R2

; C ¼ R1

R2

; l ¼ l2

l1

; and Re ¼ R2Vo
m1

ð5Þ

Next, the radial and axial components of velocity are

replaced by the Stokes’s streamfunctions, w.

Ui ¼ � 1

r
owi
or

Vi ¼
1

r
owi
oz

ð6Þ

After the curl of the momentum equation is taken, we

arrive at the following fourth order system:

Re
mi
m1

oxi

ot

�
þ o

or
Vixið Þ þ o

oz
Uixið Þ

�
¼ 1

r
E2 E2wi

� �
ð7Þ

where xi ¼ ðoViÞ=ðozÞ � ðoUiÞ=ðorÞ is the vorticity and

the operator E2 is defined as:

E2 ¼ o2

or2
� 1

r
o

or
þ o2

oz2
ð8Þ

As mentioned earlier, we will considerably simplify this
problem by taking the zero Reynold’s number limit,

Re! 0. The simplified domain equation to solve is:

E2 E2wi

� �
¼ 0 ð9Þ

For the Marangoni-driven problem, the outer radial
wall is fixed and a vertical temperature difference is

applied. Here we will assume the density and surface

tension are linear functions of the temperature.

qi ¼ qi Tcð Þ þ oqi
oeTT
����
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eTTi	
� Tc



¼ qoi � ai eTTi	

� Tc



r ¼ r Tcð Þ þ or

oeTT
����
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¼ r0 � r1

eTT	 � Tc



ð10Þ
where r is the surface tension of the liquid–liquid in-

terface and the reference temperature, Tc, is the tem-

perature at the bottom, cold rod.

For this problem, we need to use a different scaling.

Here, we will scale the length, velocity, time, and pres-

sure by R2, r1DT=l1, l1R2=r1DT , and r1DT=R2 respec-
tively. After substituting the streamfunctions and taking

the curl of the momentum equation we have:

Re
qi
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or
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owi
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or2
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oz2
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where Pr ¼ m1=j1, Gr ¼ ðga1DTR3
2Þ=ðq1m

2
1Þ, and the Rey-

nolds number is now defined as Re ¼ ðr1DTR2Þ=ðq1m
2
1Þ.

Again we take the small Reynolds number limit,

while maintaining the ratio Gr=Re finite. The order of

the Prandtl number is such that the product PrRe is still

small. When we solve for the steady temperature in Eq.
(12), we find that the temperature is only a linear func-

tion of the axial direction.

T ¼
eTT � Tc
DT

¼ z
b

Therefore, the radial derivative of the temperature in the

momentum equation is zero and the temperature and

velocity fields decouple. Eqs. (11) and (12) will then

simplify to Eq. (9). Notice that in the small Reynold’s

number limit, the domain equation for the Marangoni-
driven problem is the same as the shear-driven problem.

The difference between these two problems will of course

be in the boundary conditions.

We now formulate the boundary conditions for

the shear-driven and the Marangoni-driven problems.

Again this problem will be simplified by employing a

stress-free boundary condition at the top and bottom

rods. The separation of variables technique can then be
applied to the solution. Because the temperature field

decouples from the velocity field for the Marangoni-

driven problem, we will not show the boundary condi-

tions for the temperature, except at the liquid–liquid

846 D.T. Johnson / Int. J. Heat and Fluid Flow 23 (2002) 844–854



interface. It is necessary to account for the variation of

the surface tension in the stress balance, but this will not

change the linear temperature profile in the bulk of the

fluid.
At the center of the inner fluid, we assume the ve-

locity to be symmetric. At the top and bottom rods there

is no penetration of fluids and a stress-free condition.

There is also no fluid penetration at the interface and at

the outer radial wall. For the shear-driven problem the

axial velocity is equal to the velocity of the moving wall.

For the Marangoni-driven problem, the outer wall is

fixed with a no-slip condition.
The preceding assumptions lead to the following

boundary conditions for the shear-driven problem:

wi ¼ 0;
o2wi

oz2
¼ 0 for i ¼ 1; 2 and z ¼ 0; b ð13aÞ

w1 ¼ 0;
o2w1

or2
� 1

r
ow1

or
¼ 0 at r ¼ 0 ð13bÞ

w2 ¼ 0 at r ¼ 1 ð13cÞ

ow2

or
¼ 1 at r ¼ 1 ð13dÞ

and the following boundary conditions for the Ma-

rangoni-driven problem:

wi ¼ 0;
o2wi

oz2
¼ 0 for i ¼ 1; 2 and z ¼ 0; b ð14aÞ

w1 ¼ 0;
o2w1

or2
� 1

r
ow1

or
¼ 0 at r ¼ 0 ð14bÞ

w2 ¼ 0 at r ¼ 1 ð14cÞ

ow2

or
¼ 0 at r ¼ 1 ð14dÞ

The remaining boundary conditions are determined by

the stress balance and kinematic conditions at the in-

terface:

The boundary conditions at the interface are gov-
erned by the following five equations.

n � ~vv1 ¼ n � ~vv2 ð15aÞ

t � ~vv1 ¼ t � ~vv2 ð15bÞ

o~nn
o~tt

þ o~nn
o~zz
eUU1 ¼ eVV1 ð15cÞ

t � eSS1 � n � t � eSS2 � n � t � errr ¼ 0 ð15dÞ

n � eSS1 � n � n � eSS2 � n þ r err � n
	 


¼ 0 ð15eÞ

where Si is the Cauchy stress tensor, n and t are the unit

normal and tangential vectors and n is the position of

the interface.

eSSi ¼ �~ppiI þ li err~vv

�
þ err~vv
	 
T�

ð16aÞ

n ¼ N�1 1;ð � nzÞT ð16bÞ

t ¼ N�1 nz; 1ð ÞT ð16cÞ

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ nz

p
ð16dÞ

where nz ¼ on=oz. Substituting Eqs. (16a)–(16d) into

Eqs. (15a)–(15e) gives:

eUU1 ¼ eUU2 ð17aÞ
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We next substitute in the appropiate scaling and

streamfunctions to get the following equations for the

shear-driven problem.

w1 ¼ w2 at r ¼ C ð18aÞ

ow1

or
¼ ow2

or
at r ¼ C ð18bÞ

nz
ow1
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¼ ow2

oz
at r ¼ C ð18cÞ
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oz2
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or2
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where Ca is the Capillary number, which is defined

differently for the shear-driven and the Marangoni-dri-

ven problem.

Ca ¼ lVo
r0

or
r1DT
r0

For the Marangoni-driven problem, the only equation

which is different is Eq. (18e).

ð1
�

� n2
z Þ

1

r
o2w1

oz2

��
� o2w1

or2

�
þ 1

r2
ow1

or

�
� 2

r2
nz

ow1

oz

� ��
� l ð1
�

� n2
z Þ

1

r
o2w2

oz2

��
� o2w2

or2

�
þ 1

r2
ow2

or

�
� 2

r2
nz

ow2

oz

� ��
þ C

b
¼ 0 ð19Þ

Closely following the paper by Kuhlman (1989), the

dependent variables wi; Pi, and n will be expanded in

terms of the Capillary number.

wi ¼
X1
m¼0
n¼1
p¼0

CamRenPrpwim r; zð Þ ð20Þ

Pi ¼
Re
Ca
Pis þ

X1
m¼0
n¼1
p¼0

CamRenPrpPim r; zð Þ ð21Þ

n ¼ ns zð Þ þ
X1
m¼1
n¼0
p¼0

CamRenPrpnm r; zð Þ ð22Þ

The first term of the pressure expansion is justified on

physical grounds by setting the velocity equal to zero in

Eq. (18d). The surface deflection will be balanced by the
pressure only if the pressure is proportional to the in-

verse of the Capillary number. The two terms in Eq.

(18d), n�1 and N, can be expanded in a Taylor series

assuming that Can1=C � 1 and Caon1=oz� 1, so that

n�1 ffi C � Can1ð Þ=C2 þO Ca2
� �

and N ffi 1þO Ca2
� �

.

As was stated earlier, we will assume that the interface

shape is cylindrical for the zeroth order Capillary term,

nsðzÞ ¼ C. The terms in Eqs. (20)–(22) are expanded to
the lowest order OðRe1; Pr0;Ca0Þ. To simplify the nota-

tion, the subscripts n and p will be dropped and only the

subscript for the Capillary term, m, will be kept.

After substituting Eqs. (20)–(22) into Eqs. (18a)–(18e)

and (19), the zeroth order capillary number boundary
conditions at the interface for the shear-driven problem

become:

w10 ¼ w20 ¼ 0 at r ¼ C ð23aÞ

ow10

or
¼ ow20

or
at r ¼ C ð23bÞ

o2w10

or2
� 1

C
ow10

or
¼ o2w20

or2
� 1

C
ow20

or
at r ¼ C ð23cÞ

The zeroth-order Capillary boundary conditions at

the interface for the Marangoni-driven problem are:

w10 ¼ w20 ¼ 0 at r ¼ C ð24aÞ

ow10

or
¼ ow20

or
at r ¼ C ð24bÞ

o2w10

or2
� 1

C
ow10

or
� o2w20

or2
� 1

C
ow20

or
� C

b
at r ¼ C ð24cÞ

We may now compare the boundary conditions for

the shear-driven and Marangoni-driven problems. It

was already noted that the domain equations for both

problems are the same (Eq. (9)). Therefore, the two

problems only differ by two boundary conditions, Eqs.

(13d) and (14d), and Eqs. (23c) and (24c). This ob-

servation will be very helpful in solving the two prob-
lems.

The form of the solution can be found in a related

problem given by Duda and Vrentas (1971a,b). By ap-

plying boundary conditions (13a)–(13c) and (23a) for

the shear-driven and Marangoni-driven problem, we

arrive at the following form of the solution:

w10 ¼
X1
n¼1

AnFnðrÞ sinðanzÞ ð25Þ

w20 ¼
X1
n¼1

CnGnðrÞ½ þ DnHnðrÞ� sinðanzÞ ð26Þ

where An, Cn, and Dn are constants and Fn;Gn, and Hn
are defined below.

FnðrÞ ¼
CrI1 anrð ÞI2 anCð Þ � r2I1 anCð ÞI2 anrð Þ

I22 anCð Þ ð27Þ

GnðrÞ ¼ r2I2 anrð Þ þ B2nrI1 anrð Þ þ B3nrK1 anrð Þ ð28Þ

HnðrÞ ¼ r2K2 anrð Þ þ B4nrI1 anrð Þ þ B5nrK1 anrð Þ ð29Þ

Here Im and Km represent the mth order modified Bessels

function of the first and second kind, respectively, where

an ¼ np=b, and the constants Bin are defined as:
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B1n ¼ K1 anCð ÞI1 anð Þ � K1 anð ÞI1 anCð Þ

B2n ¼
CI2 anCð ÞK1 anð Þ � K1 anCð ÞI2 anð Þ

B1n

B3n ¼
I1 anCð ÞI2 anð Þ � CI1 anð ÞI2 anCð Þ

B1n

B4n ¼
CK2 anCð ÞK1 anð Þ � K2 anð ÞK1 anCð Þ

B1n

B5n ¼
K2 anð ÞI1 anCð Þ � CK2 anCð ÞI1 anð Þ

B1n

ð30Þ

Because the boundary conditions that have been ap-
plied, are the same for both the shear-driven and Ma-

rangoni-driven problems, Eqs. (25)–(30) hold for both

problems. All that remains now, is to solve for the re-

maining three constants An, Cn, and Dn. These three

constants, however, will be different for the shear-driven

and Marangoni-driven problems.

We start with the shear-driven problem and apply its

remaining three boundary conditions (13d), (23b), and
(23c).

CnG0
nð1Þ þ DnH 0

nð1Þ ¼ bn ð31Þ

AnF 0
n Cð Þ ¼ CnG0

n Cð Þ þ DnH 0
n Cð Þ ð32Þ

An F 00
n Cð Þ

�
� 1

C
F 0
n Cð Þ

�
¼ l Cn G00

n Cð Þ
��

� 1

C
G0
n Cð Þ

�
þ Dn H 00

n Cð Þ
�

� 1

C
H 0
n Cð Þ

��
ð33Þ

where the prime denotes differentiation with respect to r,

and bn are the odd Fourier coefficients defined as:X1
n¼1

bn sin anzð Þ ¼ 1 ð34Þ

Eq. (33) can be substantially simplified by the following

formulas:

F 00
n Cð Þ

�
� 1

C
F 0
n Cð Þ

�
¼ �2anC

I21 anCð Þ
I22 anCð Þ ð35aÞ

G00
n Cð Þ

�
� 1

C
G0
n Cð Þ

�
¼ 2anCI1 anCð Þ ð35bÞ

H 00
n Cð Þ

�
� 1

C
H 0
n Cð Þ

�
¼ �2anCK1 anCð Þ ð35cÞ

Substituting Eq. (35a)–(35c) into Eq. (33) and simpli-

fying gives:

An ¼
bn

F 0
n Cð Þ

G0
n Cð ÞUn þ H 0

n Cð Þ
G0
nð1ÞUn þ H 0

n 1ð Þ ð36Þ

Cn ¼
bnUn

G0
nð1ÞUn þ H 0

nð1Þ
ð37Þ

Dn ¼
bn

G0
nð1ÞUn þ H 0

nð1Þ
ð38Þ

where Un is defined as

Un ¼
lK1 anCð ÞF 0

n Cð Þ � H 0
n Cð ÞðI21 anCð Þ=I22 anCð ÞÞ

lI1 anCð ÞF 0
n Cð Þ þ G0

n Cð ÞðI21 anCð Þ=I22 anCð ÞÞ ð39Þ

For the Marangoni-driven problem, we apply the three

boundary conditions (24b), (24c), and (14d) to Eqs. (25)

and (26). The solution for the three coefficients An, Cn,
and Dn become:

An ¼
H 0
nð1ÞG0

n Cð Þ � H 0
n Cð ÞG0

nð1Þ
H 0
nð1ÞF 0

n Cð Þ Dn ¼ QnDn ð40Þ

Cn ¼ �H
0
nð1Þ

G0
nð1Þ

Dn ð41Þ

Dn ¼
bn

2anCbMn
ð42Þ

Mn ¼
l

U 0
nð1Þ

G0
nð1ÞI1 anCð Þ

�
þ H 0

nð1ÞK1 anCð Þ
�
� Qn

I21 anCð Þ
I22 anCð Þ

ð43Þ

The final equation we need to solve is the first-order

Capillary number correction to the surface deflection.

To do this, substitute Eqs. (20)–(22) in the normal stress

balance, Eq. (18d), and take the OðCaÞ terms.

d2n1

dz2
þ 1

C2
n1 ¼

2

C
o2w10

oroz

��
� l

o2w20

oroz

�
þ P20 � P10

�
r¼C

ð44Þ

We can think of Eq. (44) as a second-order ordi-

nary differential equation with a relatively complicated

forcing function. The first two terms in the forcing

function represents the shear stress applied to the inner

and outer fluid, respectively. The last two terms repre-
sent the dynamic pressure acting on the interface.

Notice that quite conveniently, the first order cor-

rection to the surface deflection depends only on the

zeroth-order streamfunctions and pressures. The pres-

sure in Eq. (44) may be found from Eq. (2), after the

appropiate scaling.

oP10
or

¼ 1

r
o

oz
E2w10

� �
ð45Þ

oP20
or

¼ l
r

o

oz
E2w20

� �
ð46Þ

Substitution of Eqs. (25), (26), (45) and (46) into Eq.

(44) yields:

d2n1

dz2
þ 1

C2
n1 ¼

X1
n¼1

Yn cos anzð Þ ð47Þ
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Yn ¼ 2an An
F 0
n Cð Þ
C

�(
þ I0 anCð ÞI1 anCð Þ

I22 anCð Þ

�
þ lCn I0 anCð Þ

"

�G0
n Cð Þ
C

#
þ lDn K0 anCð Þ

�
� H

0
n Cð Þ
C

�)
The solution of (47) is given as:

n1 zð Þ ¼
X1
n¼1

Ynb
2

n2p2 � b=Cð Þ2
cos z=Cð Þ

�
� cos

npz
b

� �
þ sin z=Cð Þ
sin b=Cð Þ ð½ � 1Þn � cos b=Cð Þ�

�
ð48Þ

By evaluating the proper limiting form of (48), it can

be shown that a singularity exist at b=C ¼ 2p. As

b=C ! 2p, the surface deflection becomes large and the

assumption that Can1=C � 1 becomes invalid. There-

fore, (48) only holds for 0 < b=C < 2p.
In this section, we analytically derived the equations

for the streamfunctions and the surface deflection for
both the shear-driven and Marangoni-driven problems.

The form of the solutions for both problems are the

same and only differ by the constants, An, Cn, and Dn for
the streamfunctions, and Yn for the surface deflections.

In the next section, we will look at the functional de-

pendence of the solutions on the viscosity ratio l, and
the two geometric parameters b and C.

3. Results and discussion

In this section, we will determine the behavior of the

shear function and the surface deflections as a function

of the geometric parameters b and C, as well as the

viscosity ratio, l. This will be done for both the shear-

driven and the Marangoni-driven problems.

3.1. Shear-driven flow

We start by noting that ImðrÞ and KmðrÞ are positive

and real for m an integer and r real. Next we analyze the

coefficients of the stream function: An, Cn, Dn, and Un.

By calculating all possible values of b and C for G0
nðCÞ,

H 0
nðCÞ, G0

nð1Þ, H 0
nð1Þ, and F 0

nðCÞ (i.e. 0 < b < 2p, and
0 < C < 1), it can be shown that G0

nðCÞ < 0, H 0
nðCÞ > 0,

G0
nð1Þ > 0, H 0

nð1Þ < 0, and F 0
nðCÞ < 0. Using this, we can

write the functional form of Un as:

Un ¼ � al þ b
cl þ d ð49Þ

where a, b, c, and d > 0 are constants with respect to l,
and

oUn

ol
¼ � bc� ad

cl þ dð Þ2
ð50Þ

To determine whether Un contains a minimum or

maximum, we calculate the values of a, b, c, and d

and show that ad � bc > 0 for all values of b and C,
therefore oUn=ol > 0. From these results it follows
that

oAn
ol

> 0;
oCn
ol

< 0;
oDn
ol

< 0 and An;Cn;Dn; Yn > 0

ð51Þ
Therefore as the viscosity ratio increases, the velocity of

the outer fluid decreases, while the velocity of the inner

fluid increases. For example, if the outer viscosity in-

creases relative to the inner viscosity, the outer fluid

slows down and the inner fluid speeds up. This can be

explained by noting that the outer wall in the shear-

driven flow is held constant, so that the velocity in the

outer fluid will remain relatively constant as the viscosity
ratio increases. The velocity of the inner fluid, though,

will increase as the higher viscosity of the outer fluid

increases the shear rate on the interface.

Plots of the streamfunction for various values of b
and C for a fixed l ¼ 10 are given in Fig. 2. Here two

qualitative trends can be seen. As b ¼ L=R2 increases,

the flow in both the inner and outer fluid increases,

although the largest velocity occurs in the outer fluid.
When C ¼ R1=R2 increases, the flow in the outer fluid

decreases and the flow in the inner fluid increases. The

reason being that as the interface moves closer to the

outer moving wall, more of the momentum is trans-

ferred to the inner fluid.

To analyze the surface deflection dependence on the

viscosity ratio, we will again find how the coefficient

Ynðb;C; lÞ depends on the viscosity ratio. Here the val-
ues of oYn=ol are calculated numerically, which shows

that oYn=ol > 0 for all reasonable values of l, b, and C.
Therefore the surface deflections in the shear-driven

problem increase monotonically with an increase in the

viscosity ratio and do not have a minimum value with

respect to changes in the viscosity ratio. This can be

explained physically by looking at Eq. (44). The first

term on the right-hand side of Eq. (44) represents the
shear from the inner fluid, the second term represents

the shear from the outer fluid, and the third and fourth

term represents the dynamic pressure of the outer and

inner fluid, respectively. In the shear-driven flow, all of

the shear in the inner fluid is generated by shearing of

the outer fluid. Apparently because of this, no matter

what the value of l is, the shearing in the inner fluid

never equals that of the outer fluid. As the viscosity
increases, the shear force in the outer fluid increases

faster than the shear force in the inner fluid. This, as we

will see in the next section, is not true for the Marang-

oni-driven flow. However, there are several terms in

oYn=ol that are negative, which gives at least the theo-

retical possibility that the surface may have a minimum,

but apparently does not for this derivation.
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3.2. Marangoni-driven flow

In this section we will perform a similar analysis to

that of the previous section. This will be done by ana-

lyzing the coefficients An, Cn, and Dn for the stream

functions, and the coefficient Yn for the surface deflec-

tions. As a reminder, the outer radial wall is no longer

moving and the flow is generated solely by the thermo-

capillary movement of the fluid–fluid interface.

We begin this section with the same analysis as in the
shear-driven flow. The coefficients of the stream func-

tion An, Cn, and Dn are evaluated for all values of b and

C for a fixed l (Fig. 3). Here we find that the behavior of

the streamfunctions to be quite different than the shear-
driven flow. The streamfuncions, in general, decrease as

b increases. For small values of b ¼ L=R2 as C ¼ R1=R2
increases the inner and outer streamfunctions increase.

The streamfunction of the outer fluid seems to reach a

maximum around C ¼ 0:5, where the width of the inner

and outer fluid are equal. As C increases further, the

velocity in the outer fluid decreases. This makes sense

when we consider that as the interface moves closer to
the stationary outer wall, there is less room for the

outer fluid to move and therefore slows down. The inner

Fig. 2. Streamfunction plots for the shear-driven flow for various C and b ðl ¼ 10Þ.

Fig. 3. Streamfunction plots for the Marangoni-driven flow for various C and b ðl ¼ 1Þ.
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fluid on the other hand seems to increase further as

C ! 1.

Evaluating the behavior of the coefficients of the

streamfunction as a function of the viscosity ratio also
exhibit different behavior. Here we find that

oAn
ol

> 0;
oCn
ol

< 0;
oDn
ol

< 0

and that An < 0; Cn > 0; and Dn > 0 ð52Þ

Therefore as the viscosity ratio increases, both the

inner and outer velocities decrease. In one instance, this

makes sense. As the outer viscosity increases, the vis-

cosity ratio increases and both fluids will slow down

because the outer fluid’s thicker consistency makes it
more difficult to move the two fluids. In the opposite

scenario, though, this argument does not agree. As the

inner viscosity increases, the viscosity ratio decreases,

and we find that both fluid velocities increase. It could

be weakly argued that the larger inner viscosity creates a

larger shear force on the outer fluid and therefore in-

creases the outer fluids velocity. Apparently the different

boundary conditions that the two fluids experience plays
a significant role in the fluid flow.

The most interesting result of this study comes from

analyzing the behavior of the interface as a function of

the viscosity ratio. Here we find that for a fixed value of

b, C, and n, the coefficient Yn is negative for small values

of l and positive for larger values of l. This indicates

that at a particular value of l, the interface goes to zero.

However, this is only true for the one fixed value of n

(say n ¼ 1). For a different value of n (say n ¼ 3), the

coefficient Yn is zero at a different value of l. The net

result is that the interface becomes nearly zero for a

particuar value of l (Fig. 4).

Fig. 5a gives a plot of the axial direction, z, versus the

interface deflection, n. From the plot we see that for the

values of l > 2:75, the upper interface deflects outward,
and that for the values of l < 2:25 the upper interface
deflects inward. The change in direction of deflection is

caused by the change in the viscous stress acting on the

interface.

Fig. 5b shows the interface deflections for values of

l ¼ 2:4, 2.5, and 2.6. Here we can see that the interface

also changes the direction of deflection, but now the

interface appears to have more harmonics or modes

associated with it. This can be explained, as stated
above, in terms of the different values of n. For example,

say that the value of the viscosity is such that the first

coefficient of the interface deflection, Y1, is exactly zero.

However, the other coefficients (Yn for n > 2) will not be

zero for the same value of l. As each n is associated with

the harmonic term sinðanzÞ, the first harmonic of the

interface will be cancelled out, but not the higher har-

monics. Therefore the total interface deflection will not
be zero, but will be considerably smaller (compare the

values of the interface deflections between Fig. 5a and

b), because each consecutive value of Yn will be smaller

than the preceeding value (as it must for a converging

series). We can conclude that the interface can never be

made exactly flat by adjusting the viscosity ratio alone.

4. Conclusions

In this paper, an analytical derivation of the surface

deflections was given assuming that the interface in the

absence of flow, was perfectly cylindrical and flat. The

surface deflection was found up to the first order in

the Capillary number, Ca. Using these derivations, the

streamfunctions and the surface deflections were ana-
lyzed by varying the two geometric parameters, b and C,
and the viscosity ratio, l. Two distinctly different cases

were investigated. In the first case, the flow was gener-

ated by a moving outer wall (the shear-driven flow), and

in the second case, the flow was generated by the Ma-

rangoni stress caused by a temperature difference across

the top and bottom walls (the Marangoni-driven flow).

For the shear-driven flow, as the viscosity ratio in-
creased, the velocity in the inner fluid increased, while

the velocity of the outer fluid decreased. For the

Marangoni-driven flow, as the viscosity ratio increased,

the velocities in both fluids decreased. In both flow sit-

uations, the velocities were seen to be a reasonably

strong function of the geometric parameters, b and C.
The main result of this paper elucidated the behavior

of the interfacial deflection as the viscosity ratio of the
two fluids were varied. It was found that for the shear-

driven flow, as the viscosity ratio increased, the surface

deflections increased. This was explained by the fact that

the flow in the inner fluid was only generated by the

Fig. 4. Plot of the surface deflection coefficient Yn versus the viscosity

ratio for values of n ¼ 1, 3, and 5. Note that the values of the coeffi-

cient for different n do not cross the axis at the same location.
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shearing of the outer fluid. Therefore, the shear forces

from the two fluids were never able to balance each

other out. The shear exerted by the outer fluid always
exceeded the shear exerted by the inner fluid.

For the Marangoni-driven flow, it was possible to

find values of the viscosity ratio where the shear forces

nearly canceled each other out. More precisely, each

harmonic or mode of the surface deflection had a par-

ticular value of the viscosity ratio where that mode

would become identically zero. However, these values of

the viscosity ratio were not the same for each mode, and
therefore the interface never became exactly flat. It

would be very interesting to see if this were true in an

actual experiment (Lowry and Steen, 1995). For exam-

ple, if one desired to adjust the viscosity ratio in a liquid

encapsulated liquid bridge in order to minimize the in-

terfacial deflections, it would be logical to find two fluids

whose viscosity ratio exactly cancelled out the first (and
largest) mode. However, as the temperature difference

increased, the second and higher modes ðn ¼ 3; 5; 7; . . .Þ
would begin to grow.

Obvious extensions to this problem would be to in-

clude more realistic no-slip boundary conditions on the

top and bottom walls, and an initially deformed inter-

face to account for fluids where the densities are not

identically equal. The no-slip condition would involve
the semi-analytical Papokovich–Fadle functions (Jo-

seph, 1977), but the deformed interface would require a

more involved numerical computation. It would also be

interesting to account for the variation of the viscosity

Fig. 5. Plot of the liquid height versus the surface deflection for various values of the viscosity ratio, l. In (a) and (b) C ¼ 0:5, b ¼ 1 and in (c) and (d)

C ¼ 0:5, b ¼ 2. When the surface deflections become small, higher modes ðn > 3Þ are seen.
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as a function of temperature, where the change in vis-

cosity would create differences in the shear stress on the

interface.
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